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Stochastic electron gas theory of coherence in laser-driven synchrotron radiation
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The transition from coherent to incoherent laser-driven synchrotron radiation is studied within the frame-
work of a stochastic electron gas model. The fundamental difference between this approach and a relativistic
fluid model resides in the fact that, for any number of incoherently phased point electrons, the 4-current
contains Fourier components at arbitrarily short wavelengths, whereas the fluid model introduces an unphysical
cutoff scale.

PACS numbe(s): 41.60—m, 42.50.Ar, 41.75.Ht, 52.40.Nk

The main thrust of this Brief Report is the detailed studyaxial component: du, /dr=(y—u,)dA, /d¢ and
of the radiation characteristics of a relativistic electron dis-du,/dr=u, - (dA, /d¢)=dy/dr. Using the light-cone
tribution interacting with a laser pulse of arbitrary intensity, variable, k=d¢/d7=y—u,, we recover the transverse
with a special emphasis on the coherefice4] properties of  momentum invariantu, —A, ; « itself is invariant: «
the scattered light. This work is motivated in part by recent= = y,(1— g,). The dynamics of a single electron within

experimental results, where high-intensity lasers usinghe |aser field are now completely defined:
chirped pulse amplificatiofCPA) [5—7] have been used to

pump free electrons to produce harmori6§ and to drive u (n=A(¢), Uul(r)=uy+ (K51/2) Af(¢),
relativistic electron beams to generate short-wavelength ra-
diation, as exemplified by the E-144 experiment at SLAC and  y,(7)=yo+ (K51/2) Af(d’)- 3)

[9]; this work is also stimulated by the growing interest in
the development of laser-based advanced light sources, in-
cluding they-v collider and free-electron lase(BEL’s) op-
erating in the self-amplified spontaneous-emission mode .
[10]. _ -1
The transition from coherent to incoherent laser-driven =Xuo Ko J; uu(y)dy
synchrotron radiation is studied within the framework of a
stochastic electron gaSSEG model, where the statistical is the electron 4-position; for a number of independent elec-
distribution of the initial electron phase is explicitly taken trons, provided that space-charge effects can be neglected,
into account. In contrast with the simplistic linear scaling ofthe dynamics are identical, except for the fact that the initial
the intensity with the number of electrons, an expressiorpositions vary.
describing the degree of coherence of the radiation is de- Using ¢ as the independent variable, the distribution of
rived, which depends on the ratio of the bunch to the radiaphotons radiated per unit solid angle per unit frequency is
tion wavelength. [14]

We first review the motion of an electron in the external
laser field[11-13: the length scale of the problemdgw, dzNy(w,ﬁ) a o
while time can be measured in units ot}/, charge in units  —4 "3~
of e, and mass in units ahy. The electron motion is driven
by the Lorentz forcedu,/dr=—F,u", where u,(r)
=dx,/d7=y(1,8) is the 4-velocity andris the proper time Xexglio[ d+2z,(d)—N-Xy()]}dp
along the electron world line, (7). The field tensor is de-
fined in terms of the 4-potential &s,,=4,A,—d,A,,; for
our purpose, a plane-wave model is  suffi-
cient: the 4-potential is given by, (x,)=[0A, (¢),0],
where ¢=k, x*(7)=t—z, and satisfies the Lorentz gauge
condition,d ,A*=0. The electromagnetic field is
d¢p dA | dA,

@
X, (d)=X,(p=0)+ fo (dx,/d7)(d7/dy)dy

Ne .
> [ axtnxu (o
1 —

n=

4.2 2
47° kg
2

)

whereN,, is the photon number) is the unit vector in the
direction of observatiora is the fine-structure constant, and
N, is the electron number; as discussed aboyég) can be
replaced by the single-electron result obtained in Bg.

For backscattered radiation,

E=E =—0A =———= .
+ TR gt de d¢ W d°N(w,2) a w§ e
. dodQ 472 2|& _Aul(@)
dg dA, dA, z
B=B, =VXA, =29,XA, =2X— ——=—2X——.
, LR 2R ALEEX G g T T g o x expli o +22,(4)1}db| ;
2

As uxzxdA, Id¢=[u, - (dA, /d¢p)]z—u,(dA, /dg), the axial position of each radiating electron must be speci-
the force equation can be separated into a transverse and fed:

1063-651X/2000/6(1)/972(4)/$15.00 PRE 61 972 ©2000 The American Physical Society



PRE 61 BRIEF REPORTS 973

Ug 1 @ Incoherent Scattering 1 4
zn<¢>):zn+—¢+7j Alydy, )
Ko 2K0 0 'y
P®) |————
where z, is the initial position of thenth electron. o i —»
I g’Af(w)ddf represents the relativistic mass correction of the 0 2n 8 R
“dressed” electron within the high-intensity laser pulse. The
integral over phase and the sum over electrons separate: 't
d®N(0,~2) a +o i
%=4—sz J: AL() V..
= NG
& 2
xexp[i)( b+ JO Af(zp)dzp“dqb 't
Ne 2 P©) f\ s "L
x| > explizwz,)]| . (6) >
n=1 0 2n6 R
Here, x= o[ (1+ Bo)/(1—By)] is the normalized Doppler- Coherent Scattering 1 4
shifted frequency, andiEEileprZa)zn)l2 is the coherence
factor[10].

In the case of a uniform initial electron distribution with PO I 89~ 80) .
random phase, illustrated in Fig(tbp), the coherence factor > >
is simply the amplitude of a sum of phasors, each with unit 0 or R
length and a random anglé To show that the average
|ength of the sum |S g|ven b)/N_e, we use a proof by recur- FIG. 1. Phasor summation and phase angle prObablllty denSIty

rence: first assume that the average length of therfipsta- for (from top to _botton)l incoherent, partially coherent, and fully
sors isyn; we now add a vector of unit length with random GCnerent scattering.
orientation, as shown in Fig. (niddle), and the new vector . .

_ \/ \/— 2 ai? L(n), calculated exactly with a computer, is shown as a
has a length given by V(yn+cosO)™+sin"0  fynction of(cos6), and compared to EG9) for n=10%; the

=Vn+1+ 2\/ﬁcose. To obtain the new average length, we precision is excellent. The averaging over the random phase
integrate over: angle must now be specified:

- vz o= P(6)cog 6(2)]d6, 10
n+1+\/?ﬁf02 cosade} {cos6) ffx (6)co4 6(z)] (10

<\/|(\/ﬁ+ cosf) X+ sin 6|2) =

whereP(6) is the probability density for the initial phase of
=yn+1, (7)  the electron. P(6) is directly related to the initial electron
distribution by the relationd=2wz, and is normalized:
N ) o /T2P(6)d#=1. Here, a Gaussian bunch of widiz is con-
We have thus shown th&t> ', exp(6,)|)=Ne; this re-  Sigered; the probability density takes the forRj6(2)]

sult is independent of t'he radiat.io'n frequency, because the@(1/@2wAz)exr[—(z/Az)2], and the average overis
are no boundary conditions defining a length scale. In a re- .

alistiq _situation, the initial _electron distrik_Jut_ion define_s a (cosd) = n(a)= \/E f+ e’ c0s6 o), (11)
transition from coherent to incoherent radiation for a given T ) w

wavelength. To properly model this situation, the derivation o _

presented above must be modified: the key point is to replacehere a=(1/2wAz)?. This integral yields (cos6)
the average ovef by a weighted average including the prob- =exp(~w? A22)=e_1/2"".. - _

ability density of the initial phase. As derived previously, the If the electron distribution is much longer thak

which proves the recurrence.

lengthL(n+1) of n+1 phasors is =2mclw, {cosb)=0, and the radiation is incoherent. When
the electron distribution is much shorter tharthe probabil-
L?(n+1)=[L(n)+cos#]?+sir? 0 ity density distribution approaches a Diradunction, with
. _ap2 .
=12(n)+ 1+ 2L(n)cosé; ®) lim,_...[\V(a/7)e 3% ]=5(6), and the radiated power scales

as Ng. This is illustrated in Fig. 1: for incoherent scattering
averaging ovem, and taking the limit wher@>1, we find  (top), each phasor angle has equal probabilitypse)=0,

that and the resulting superposition increases/as The case of
fully coherent radiation is shown in Fig.(bottom); here the
L(n)=+n(1—{cosh)?)+n{coss), (9) angular probability density is a Diraé function, where

P(6)=48(6— 6,); the interference ternjcosé)=1, and the
with a relative error equal to {¢h. The accuracy of this phasor sum increases asFinally, an intermediate case is
solution is illustrated in Fig. Ztop), where the behavior of shown in Fig. 1(middle); here the probability density indi-



974 BRIEF REPORTS PRE 61

10° where® is the degenerate hypergeometric function and
=3[14+iA¢(x*=1)]. The frequency downshift due to radia-
L(m) = {1 —(c0307%) +mcos6) tion pressure is determined by considering the nonlinear
10° ¢ phase,A(¢)=(x—1)¢+ xA2A ¢ tanh@/Ag), in the Fou-

rier integral; Taylor expanding aroung=0, we obtain
A(¢):[X(1+AS)—1]¢+O(¢3). The frequency of the
Compton backscattered line is obtained by canceling the lin-
ear coefficient, yieIdingX=(1+A(2))*1; this is the well-
known radiation frequency for a FEL with an electromag-

L(n)

104

108

0 0.2Avsrage0 I.:::ase An%lg, (00589.8 ! netiC nggler[15]
20 To compare the SEG to a relativistic fluid, we now con-
sider the Lorentz force equatiomu,/d7=(u’d,)u,=
15 Stochastic Gas Mode! -(d,A,—3d,A,)u” and the charge-conservation equation
10g,0] L*(Nev(oos0) = &7 ) | d,j*=0. Here,u,(x,) is the 4-velocity field of the relativ-
,uJ JTANAS % y

istic fluid, andd/dr is to be considered as a convective op-
erator. The 4-current density of the relativistic fluid is given

10 |

5| Fluid Model %m#) by j .(x,)=—n(x,)[u,(x,)/¥(x,)], wheren(x,) is the den-
sity. Space-charge and radiation reactjd8,16,17 effects
\ ' . are neglected.
0 0 2 4 6 8 10 As the force equation is driven by the laser 4-potential,
Normaiized Frequency, waz which is a function of the fluid phasey(z,t) =t—z, we seek

FIG. 2. Top: comparison between the average lengtm of & solution where the other fluid fields also dependforthe
=10P phasors, as calculated exactly with a computer, and as deOnvective derivative operator reduces tq”((V)uM(z,t)
rived from Eq.(9). Bottom: logarithm of the effective number of =(¥—U;)du,/d¢. The Lorentz force equation now reads

radiating electrons as a function of the normalized bunch length, fok ¥ —Uz)du/d¢= —(yE+uxB); in addition, energy conser-
both models. vation yields (y—u,)dy/d¢=—u-E. The fields are given

in Egs. (1) and(2).
cates a preferred angular range, resulting in a superposition The evolution of the momentum field is separated into a

with an average length increasing as shown in @g. transverse and an axial componenty—(u,)d/d¢(u;

Thus, the power backscattered by an electron bunch issA;)=0 and (y—uydu,/dép=u, - (dA, Idd)= (v
given by —u,)dy/d¢. We recover the transverse momentum invari-
ant,u, — A ; the light-cone variable is also a fluid invariant.

dzNy(a),—i) _ax

ax o | [T7 The sought-after fluid equilibrium is
Lo 2N ) [ A

= _ Al($)
& 2 uZ(th):uZ(¢):uZO+ KO ! AL(¢)ULO+ LT ’ (15)
Xexp{ix ¢+f A2()dy }dd; . (12
0 and
and depends explicitly on the wavelength and bunch size. 3 B . AZ ()
For a linearly polarized Gaussian pulse, wheke () Nz =v(d)=rot Ko | AL(d) U ot ——| (16
= Agke "¢~ (#/A0)° and with A2<1, the Fourier transform
yields To determine the density, we seek a solution to the charge-
conservation equation where the density field is a function of
d*Ny(w,-2) a , ., a2 the phase:
doda 16 XfoAdTL (N8 ) d n )} d(n d (n) 0. (7
— | —(y—U,)|= 5| —k|=kKkog55| —|=0;
(x—1)2A 2 dgly' " P dely )T ey
Xexg — — (13
thus, the relativistic plasma frequency is a relativistic fluid

invariant: n(¢)/y(¢)=ng/7y,; the density modulation in-

In the case of circular polarization, for a hyperbolic Secan.tduced by the laser radiation pressure exactly compensates the

pulse, the full nonlinear spectrum can be determined analyt'\'/ariation of the fluid energy within the pulse. Herg is the

cally [13) initial beam density.
N (0,—2) a i The distribution of energy radiated by the fluid per unit
#zngSA&LZ(Ne,e*‘” Az%) solid angle per unit frequency is derived by Fourier-
@ transforming the 4-current into momentum spat4):
®(p-,1,2A5xA9)|? d®Ny(w,f)  a .
Z co r{wmﬁ( +1)} | do df) _mwffffwd Xl
sh— +
2 "X )

(14 X[AX]j(x,)]exdio(t—N-X)] (18
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where j(x,) is given by j=—-ng=—ny(y/yo)B=
—(No/yo)u.

The initial beam density iy(x,)=pf({), where we
have defined the electron-beam phdée,t)=z— Bot, and

wheref () is the bunch envelope, which propagates with the

axial velocity By; p is defined by the total charge in the
bunch: pf”.dz f({)=N,. This initial density field con-

valid as long as its spatial and temporal gradients are small

compared tky andwy. We use a Gaussian profile to obtain
an analytical result for the radiated spectrd({)
=exf—({/A2)?] and p=N,/\7Az. Here,Az is the bunch
length, and a linearly polarized laser pulse, with tempora
envelopeg(¢), is considered:

dZNY(w,—z): a o 22
dodQ  4m2 2P 70

f Jdezdtf(og(@

2
. (19

Xexp|w(t+2)— o]}

d°N (@, 2) 2

& 24 22
do dO :EXAOAqs Neex -2

_1)2 2

xAz
1+ By

(22)

serves charge. This model for the background fluid density ig—he Compton backscattered frequency is obtained yfor

=1; for By— —1, we recover the resulb=4y3 [13,15.

The SEG and relativistic fluid models are compared by
inspecting Egs(13) and(22), in a frame whereBy,=0. The
difference between both models is shown in Figbattom),
yvhere the number of electronshg = 10'°. The logarithm of
each coherence factor is calculated as a function of the nor-
malized bunch lengthpAz. In the case of a perfectly coher-
ent radiation processAz— 0, and both models yield thﬁég
scaling. When the electron distribution becomes long com-
pared to the radiation wavelength, the SEG model correctly
predicts the linear scaling witN,. The fluid model yields a
very different result: the coherence factor continues to de-
crease exponentially, as shown by the parabolic curve in Fig.

The integrals over axial position and time are separated b¥ (bottom. This is due to the fact that the Fourier transform
using  and ¢ as independent variables. The product of theOf the Gaussian fluid distribution is a Gaussian with an ar-

differential elements is given by the Jacobian

dz 0z
| 3 _—ded¢
dz dt= g ot d¢d§—1_—ﬂo, (20
i I
and Eq.(19) reduces to
N (0, ~2) S N
dl)(;(z =axAgp” f_w dgex‘{'lfﬁo_ E}
+oo ¢2 2
xf_m d¢ex+(x—1)¢—m (21)

gument proportional to the produetAz: for arbitrarily
short wavelengths, the fluid 4-current yields a vanishingly
small Fourier component. The fluid model introduces an un-
physical cutoff scale given by the length of the electron dis-
tribution. Thus, the fundamental difference between the SEG
approach and the relativistic fluid model resides in the fact
that, for any number of incoherently phased point electrons,
the 4-current contains Fourier components at arbitrarily short
wavelengths, whereas the fluid model introduces an unphysi-
cal cutoff scale. Therefore, the discrete nature of electric
charge is shown to play a fundamental role in the physics of
incoherent radiation processes.

This work was partially supported by the Lawrence Liv-
ermore National Laboratory under DOE Contract No.
W-7405-ENG-48. | would also like to thank C. Pellegrini. K.

The first integral is the fluid coherence factor. IntegratingJ. Kim, A. K. Kerman, J. Rosenzweig, J. R. Van Meter, and

over ¢ and ¢, we finally obtain
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