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Stochastic electron gas theory of coherence in laser-driven synchrotron radiation
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The transition from coherent to incoherent laser-driven synchrotron radiation is studied within the frame-
work of a stochastic electron gas model. The fundamental difference between this approach and a relativistic
fluid model resides in the fact that, for any number of incoherently phased point electrons, the 4-current
contains Fourier components at arbitrarily short wavelengths, whereas the fluid model introduces an unphysical
cutoff scale.

PACS number~s!: 41.60.2m, 42.50.Ar, 41.75.Ht, 52.40.Nk
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The main thrust of this Brief Report is the detailed stu
of the radiation characteristics of a relativistic electron d
tribution interacting with a laser pulse of arbitrary intensi
with a special emphasis on the coherence@1–4# properties of
the scattered light. This work is motivated in part by rece
experimental results, where high-intensity lasers us
chirped pulse amplification~CPA! @5–7# have been used to
pump free electrons to produce harmonics@8#, and to drive
relativistic electron beams to generate short-wavelength
diation, as exemplified by the E-144 experiment at SLA
@9#; this work is also stimulated by the growing interest
the development of laser-based advanced light sources
cluding theg-g collider and free-electron lasers~FEL’s! op-
erating in the self-amplified spontaneous-emission m
@10#.

The transition from coherent to incoherent laser-driv
synchrotron radiation is studied within the framework of
stochastic electron gas~SEG! model, where the statistica
distribution of the initial electron phase is explicitly take
into account. In contrast with the simplistic linear scaling
the intensity with the number of electrons, an express
describing the degree of coherence of the radiation is
rived, which depends on the ratio of the bunch to the rad
tion wavelength.

We first review the motion of an electron in the extern
laser field@11–13#: the length scale of the problem isc/v0 ,
while time can be measured in units of 1/v0 , charge in units
of e, and mass in units ofm0 . The electron motion is driven
by the Lorentz forcedum /dt52Fmnun, where um(t)
5dxm /dt5g(1,b) is the 4-velocity andt is the proper time
along the electron world linexm(t). The field tensor is de-
fined in terms of the 4-potential asFmn5]mAn2]nAm ; for
our purpose, a plane-wave model is suf
cient: the 4-potential is given byAm(xv)5@0,A'(f),0#,
where f5kmxm(t)5t2z, and satisfies the Lorentz gaug
condition,]mAm50. The electromagnetic field is

E5E'52] tA'52
]f

]t

dA'

df
52

dA'

df
~1!

and

B5B'5“3A'5 ẑ]z3A'5 ẑ3
]f

]z

dA'

df
52 ẑ3

dA'

df
.

~2!

As u3 ẑ3dA' /df5@u'•(dA' /df)# ẑ2uz(dA' /df),
the force equation can be separated into a transverse an
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axial component: du' /dt5(g2uz)dA' /df and
duz /dt5u'•(dA' /df)5dg/dt. Using the light-cone
variable, k5df/dt5g2uz , we recover the transvers
momentum invariant,u'2A' ; k itself is invariant: k
5k05g0(12b0). The dynamics of a single electron withi
the laser field are now completely defined:

u'~t!5A'~f!, uz~t!5u01 ~k0
21/2! A'

2 ~f!,

and gz~t!5g01 ~k0
21/2! A'

2 ~f!. ~3!

xm~f!5xm~f50!1E
0

f

~dxm /dt!~dt/dc!dc

5xm01k0
21E

0

f

um~c!dc

is the electron 4-position; for a number of independent el
trons, provided that space-charge effects can be negle
the dynamics are identical, except for the fact that the ini
positions vary.

Using f as the independent variable, the distribution
photons radiated per unit solid angle per unit frequency
@14#

d2Ng~v,n̂!

dv dV
5

a

4p2

v

k0
2 U(

n51

Ne E
2`

1`

n̂3@ n̂3un~f!#

3exp$ iv@f1zn~f!2n̂•xn~f!#%dfU2

, ~4!

whereNg is the photon number,n̂ is the unit vector in the
direction of observation,a is the fine-structure constant, an
Ne is the electron number; as discussed above,un(f) can be
replaced by the single-electron result obtained in Eq.~3!.

For backscattered radiation,

d2Ng~v,ẑ!

dv dV
5

a

4p2

v

k0
2 U(

n51

Ne E
2`

1`

A'~f!

3exp$ iv@f12zn~f!#%dfU2

;

the axial position of each radiating electron must be spe
fied:
972 ©2000 The American Physical Society
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zn~f!5zn1
u0

k0
f1

1

2k0
2 E

0

f

A'
2 ~c!dc, ~5!

where zn is the initial position of the nth electron.
*0

fA'
2 (c)dc represents the relativistic mass correction of

‘‘dressed’’ electron within the high-intensity laser pulse. T
integral over phase and the sum over electrons separate

d2Ng~v,2 ẑ!

dv dV
5

a

4p2 xU E
2`

1`

A'~f!

3expH ixFf1E
0

f

A'
2 ~c!dcG J dfU2

3U(
n51

Ne

exp~ i2vzn!U2

. ~6!

Here, x5v@(11b0)/(12b0)# is the normalized Doppler
shifted frequency, andu(n51

Ne exp(i2vzn)u2 is the coherence
factor @10#.

In the case of a uniform initial electron distribution wit
random phase, illustrated in Fig. 1~top!, the coherence facto
is simply the amplitude of a sum of phasors, each with u
length and a random angleu. To show that the averag
length of the sum is given byANe, we use a proof by recur
rence: first assume that the average length of the firstn pha-
sors isAn; we now add a vector of unit length with rando
orientation, as shown in Fig. 1~middle!, and the new vector

has a length given by A(An1cosu)21sin2 u

5An1112An cosu. To obtain the new average length, w
integrate overu:

^Au~An1cosu!x̂1 ŷ sinuu2&5Fn111
An

p
E

0

2p

cosu duG1/2

5An11, ~7!

which proves the recurrence.
We have thus shown that^u(n51

Ne exp(iun)u2&5Ne; this re-
sult is independent of the radiation frequency, because t
are no boundary conditions defining a length scale. In a
alistic situation, the initial electron distribution defines
transition from coherent to incoherent radiation for a giv
wavelength. To properly model this situation, the derivat
presented above must be modified: the key point is to rep
the average overu by a weighted average including the pro
ability density of the initial phase. As derived previously, t
lengthL(n11) of n11 phasors is

L2~n11!5@L~n!1cosu#21sin2 u

5L2~n!1112L~n!cosu; ~8!

averaging overu, and taking the limit wheren@1, we find
that

L~n!.An~12^cosu&2!1n^cosu&, ~9!

with a relative error equal to 1/An. The accuracy of this
solution is illustrated in Fig. 2~top!, where the behavior o
e

it

re
e-

ce

L(n), calculated exactly with a computer, is shown as
function of ^cosu&, and compared to Eq.~9! for n5106; the
precision is excellent. The averaging over the random ph
angle must now be specified:

^cosu&5E
2`

1`

P~u!cos@u~z!#du, ~10!

whereP(u) is the probability density for the initial phase o
the electron. P(u) is directly related to the initial electron
distribution by the relationu52vz, and is normalized:
*2`

1`P(u)du51. Here, a Gaussian bunch of widthDz is con-
sidered; the probability density takes the formP@u(z)#
5(1/Ap2vDz)exp@2(z/Dz)2#, and the average overu is

^cosu&5h~a!5Aa

p E
2`

1`

e2au2
cosu du, ~11!

where a5(1/2vDz)2. This integral yields ^cosu&
5exp(2v2 Dz2)5e21/2a.

If the electron distribution is much longer thanl
52pc/v, ^cosu&50, and the radiation is incoherent. Whe
the electron distribution is much shorter thanl, the probabil-
ity density distribution approaches a Diracd function, with
lima→`@A(a/p)e2au2

#5d(u), and the radiated power scale
asNe

2. This is illustrated in Fig. 1: for incoherent scatterin
~top!, each phasor angle has equal probability;^cosu&50,
and the resulting superposition increases asAn. The case of
fully coherent radiation is shown in Fig. 1~bottom!; here the
angular probability density is a Diracd function, where
P(u)5d(u2u0); the interference term̂cosu&51, and the
phasor sum increases asn. Finally, an intermediate case i
shown in Fig. 1~middle!; here the probability density indi

FIG. 1. Phasor summation and phase angle probability den
for ~from top to bottom! incoherent, partially coherent, and full
coherent scattering.
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cates a preferred angular range, resulting in a superpos
with an average length increasing as shown in Eq.~9!.

Thus, the power backscattered by an electron bunc
given by

d2Ng~v,2 ẑ!

dv dV
5

ax

4p2 L2~Ne ,e2v2Dz2
!U E

2`

1`

A'~f!

3expH ixFf1E
0

f

A'
2 ~c!dcG J dfU2

. ~12!

and depends explicitly on the wavelength and bunch s
For a linearly polarized Gaussian pulse, whereA'(f)
5A0x̂e2 if2(f/Df)2

, and with A0
2!1, the Fourier transform

yields

d2Ng~v,2 ẑ!

dv dV
5

a

16p
xA0

2Df2L2~Ne ,e2v2Dz2
!

3expF2
~x21!2Df2

2 G . ~13!

In the case of circular polarization, for a hyperbolic sec
pulse, the full nonlinear spectrum can be determined ana
cally @13#:

d2Ng~v,2 ẑ!

dv dV
5

a

8
xA0

2Df2L2~Ne ,e2v2Dz2
!

3H (
6 UF~m6,1,2iA0

2xDf!

coshFp2 Df~x61!GU
2J ,

~14!

FIG. 2. Top: comparison between the average length on
5106 phasors, as calculated exactly with a computer, and as
rived from Eq.~9!. Bottom: logarithm of the effective number o
radiating electrons as a function of the normalized bunch length
both models.
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e.

t
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whereF is the degenerate hypergeometric function andm6

5 1
2 @11 iDf(x61)#. The frequency downshift due to radia

tion pressure is determined by considering the nonlin
phase,L(f)5(x21)f1xA0

2Df tanh(f/Df), in the Fou-
rier integral; Taylor expanding aroundf50, we obtain
L(f).@x(11A0

2)21#f1O(f3). The frequency of the
Compton backscattered line is obtained by canceling the
ear coefficient, yieldingx5(11A0

2)21; this is the well-
known radiation frequency for a FEL with an electroma
netic wiggler@15#.

To compare the SEG to a relativistic fluid, we now co
sider the Lorentz force equationdum /dt5(un]n)um5
2(]mAn2]nAm)un and the charge-conservation equati
]m j m50. Here,um(xn) is the 4-velocity field of the relativ-
istic fluid, andd/dt is to be considered as a convective o
erator. The 4-current density of the relativistic fluid is give
by j m(xn)52n(xn)@um(xn)/g(xn)#, wheren(xn) is the den-
sity. Space-charge and radiation reaction@13,16,17# effects
are neglected.

As the force equation is driven by the laser 4-potent
which is a function of the fluid phase,f(z,t)5t2z, we seek
a solution where the other fluid fields also depend onf: the
convective derivative operator reduces to (un]n)um(z,t)
[(g2uz)dum /df. The Lorentz force equation now read
(g2uz)du/df52(gE1u3B); in addition, energy conser
vation yields (g2uz)dg/df52u•E. The fields are given
in Eqs.~1! and ~2!.

The evolution of the momentum field is separated into
transverse and an axial component: (g2uz)d/df(u'

2A')50 and (g2uz)duz /df5u'•(dA' /df)5(g
2uz)dg/df. We recover the transverse momentum inva
ant,u'2A' ; the light-cone variable is also a fluid invarian
The sought-after fluid equilibrium is

uz~z,t !5uz~f!5uz01k0
21FA'~f!•u'01

A'
2 ~f!

2 G , ~15!

and

g~z,t !5g~f!5g01k0
21FA'~f!•u'01

A'
2 ~f!

2 G . ~16!

To determine the density, we seek a solution to the cha
conservation equation where the density field is a function
the phase:

d

df Fn

g
~g2uz!G5

d

df S n

g
k D5k0

d

df S n

g D50; ~17!

thus, the relativistic plasma frequency is a relativistic flu
invariant: n(f)/g(f)5n0 /g0 ; the density modulation in-
duced by the laser radiation pressure exactly compensate
variation of the fluid energy within the pulse. Here,n0 is the
initial beam density.

The distribution of energy radiated by the fluid per un
solid angle per unit frequency is derived by Fourie
transforming the 4-current into momentum space@14#:

d2Ng~v,n̂!

dv dV
5

a

4p2 vU E E E E
R4

d4xmn̂

3@ n̂3 j ~xm!#exp@ iv~ t2n̂•x!#U2

. ~18!
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where j (xm) is given by j52nb52n0(g/g0)b5
2(n0 /g0)u.

The initial beam density isn0(xm)5r f (z), where we
have defined the electron-beam phasez(z,t)5z2b0t, and
wheref (z) is the bunch envelope, which propagates with
axial velocity b0 ; r is defined by the total charge in th
bunch: r*2`

` dz f(z)5Ne . This initial density field con-
serves charge. This model for the background fluid densit
valid as long as its spatial and temporal gradients are s
compared tok0 andv0 . We use a Gaussian profile to obta
an analytical result for the radiated spectra:f (z)
5exp@2(z/Dz)2# and r5Ne /ApDz. Here,Dz is the bunch
length, and a linearly polarized laser pulse, with tempo
envelopeg(f), is considered:

d2Ng~v,2 ẑ!

dv dV
5

a

4p2

v

g0
2 r2A0

2U E E
R2

dz dt f~z!g~f!

3exp$@v~ t1z!2f#%U2

. ~19!

The integrals over axial position and time are separated
using z andf as independent variables. The product of t
differential elements is given by the Jacobian

dz dt5U ]z

]f

]z

]z

]t

]f

]t

]z

Udf dz5
2df dz

12b0
, ~20!

and Eq.~19! reduces to

d2Ng~v,2 ẑ!

dv dV
5axA0

2r2U E
2`

1`

dz expF i
2xz

11b0
2

z2

Dz2G
3E

2`

1`

df expF i ~x21!f2
f2

Df2GU2

. ~21!

The first integral is the fluid coherence factor. Integrati
over f andz, we finally obtain
-

pt.
e

is
all

l

y
e

d2Ng~v,2 ẑ!

dv dV
5

a

16p
xA0

2Df2Ne
2 expF22S xDz

11b0
D 2G

3expF2
~x21!2Df2

2 G . ~22!

The Compton backscattered frequency is obtained fox
51; for b0→21, we recover the resultv.4g0

2 @13,15#.
The SEG and relativistic fluid models are compared

inspecting Eqs.~13! and ~22!, in a frame whereb050. The
difference between both models is shown in Fig. 2~bottom!,
where the number of electrons isNe51010. The logarithm of
each coherence factor is calculated as a function of the
malized bunch length,vDz. In the case of a perfectly coher
ent radiation process,vDz→0, and both models yield theNe

2

scaling. When the electron distribution becomes long co
pared to the radiation wavelength, the SEG model corre
predicts the linear scaling withNe . The fluid model yields a
very different result: the coherence factor continues to
crease exponentially, as shown by the parabolic curve in
2 ~bottom!. This is due to the fact that the Fourier transfor
of the Gaussian fluid distribution is a Gaussian with an
gument proportional to the productvDz: for arbitrarily
short wavelengths, the fluid 4-current yields a vanishin
small Fourier component. The fluid model introduces an
physical cutoff scale given by the length of the electron d
tribution. Thus, the fundamental difference between the S
approach and the relativistic fluid model resides in the f
that, for any number of incoherently phased point electro
the 4-current contains Fourier components at arbitrarily sh
wavelengths, whereas the fluid model introduces an unph
cal cutoff scale. Therefore, the discrete nature of elec
charge is shown to play a fundamental role in the physics
incoherent radiation processes.
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